3.4.4 \(\int \frac {1}{(e \csc (c+d x))^{3/2} (a+a \sec (c+d x))^2} \, dx\) [304]

Optimal. Leaf size=213 \[ \frac {4}{a^2 d e \sqrt {e \csc (c+d x)}}-\frac {4 \cos (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cos (c+d x) \cot ^2(c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cot (c+d x) \csc (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}+\frac {4 \csc ^2(c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {4 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{a^2 d e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}} \]

[Out]

4/a^2/d/e/(e*csc(d*x+c))^(1/2)-4/3*cos(d*x+c)/a^2/d/e/(e*csc(d*x+c))^(1/2)-2/3*cos(d*x+c)*cot(d*x+c)^2/a^2/d/e
/(e*csc(d*x+c))^(1/2)-2/3*cot(d*x+c)*csc(d*x+c)/a^2/d/e/(e*csc(d*x+c))^(1/2)+4/3*csc(d*x+c)^2/a^2/d/e/(e*csc(d
*x+c))^(1/2)+4*(sin(1/2*c+1/4*Pi+1/2*d*x)^2)^(1/2)/sin(1/2*c+1/4*Pi+1/2*d*x)*EllipticF(cos(1/2*c+1/4*Pi+1/2*d*
x),2^(1/2))/a^2/d/e/(e*csc(d*x+c))^(1/2)/sin(d*x+c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.32, antiderivative size = 213, normalized size of antiderivative = 1.00, number of steps used = 13, number of rules used = 9, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.360, Rules used = {3963, 3957, 2954, 2952, 2647, 2720, 2644, 14, 2649} \begin {gather*} \frac {4 \csc ^2(c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}+\frac {4}{a^2 d e \sqrt {e \csc (c+d x)}}-\frac {4 \cos (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cot (c+d x) \csc (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cos (c+d x) \cot ^2(c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {4 F\left (\left .\frac {1}{2} \left (c+d x-\frac {\pi }{2}\right )\right |2\right )}{a^2 d e \sqrt {\sin (c+d x)} \sqrt {e \csc (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((e*Csc[c + d*x])^(3/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

4/(a^2*d*e*Sqrt[e*Csc[c + d*x]]) - (4*Cos[c + d*x])/(3*a^2*d*e*Sqrt[e*Csc[c + d*x]]) - (2*Cos[c + d*x]*Cot[c +
 d*x]^2)/(3*a^2*d*e*Sqrt[e*Csc[c + d*x]]) - (2*Cot[c + d*x]*Csc[c + d*x])/(3*a^2*d*e*Sqrt[e*Csc[c + d*x]]) + (
4*Csc[c + d*x]^2)/(3*a^2*d*e*Sqrt[e*Csc[c + d*x]]) - (4*EllipticF[(c - Pi/2 + d*x)/2, 2])/(a^2*d*e*Sqrt[e*Csc[
c + d*x]]*Sqrt[Sin[c + d*x]])

Rule 14

Int[(u_)*((c_.)*(x_))^(m_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*u, x], x] /; FreeQ[{c, m}, x] && SumQ[u]
 &&  !LinearQ[u, x] &&  !MatchQ[u, (a_) + (b_.)*(v_) /; FreeQ[{a, b}, x] && InverseFunctionQ[v]]

Rule 2644

Int[cos[(e_.) + (f_.)*(x_)]^(n_.)*((a_.)*sin[(e_.) + (f_.)*(x_)])^(m_.), x_Symbol] :> Dist[1/(a*f), Subst[Int[
x^m*(1 - x^2/a^2)^((n - 1)/2), x], x, a*Sin[e + f*x]], x] /; FreeQ[{a, e, f, m}, x] && IntegerQ[(n - 1)/2] &&
 !(IntegerQ[(m - 1)/2] && LtQ[0, m, n])

Rule 2647

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(a*Cos[e +
f*x])^(m - 1)*((b*Sin[e + f*x])^(n + 1)/(b*f*(n + 1))), x] + Dist[a^2*((m - 1)/(b^2*(n + 1))), Int[(a*Cos[e +
f*x])^(m - 2)*(b*Sin[e + f*x])^(n + 2), x], x] /; FreeQ[{a, b, e, f}, x] && GtQ[m, 1] && LtQ[n, -1] && (Intege
rsQ[2*m, 2*n] || EqQ[m + n, 0])

Rule 2649

Int[(cos[(e_.) + (f_.)*(x_)]*(a_.))^(m_)*((b_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[a*(b*Sin[e +
f*x])^(n + 1)*((a*Cos[e + f*x])^(m - 1)/(b*f*(m + n))), x] + Dist[a^2*((m - 1)/(m + n)), Int[(b*Sin[e + f*x])^
n*(a*Cos[e + f*x])^(m - 2), x], x] /; FreeQ[{a, b, e, f, n}, x] && GtQ[m, 1] && NeQ[m + n, 0] && IntegersQ[2*m
, 2*n]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2952

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Int[ExpandTrig[(g*cos[e + f*x])^p, (d*sin[e + f*x])^n*(a + b*sin[e + f*x])^m, x], x]
 /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && IGtQ[m, 0]

Rule 2954

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + (b_.)*sin[(e_.) + (f_.)*
(x_)])^(m_), x_Symbol] :> Dist[(a/g)^(2*m), Int[(g*Cos[e + f*x])^(2*m + p)*((d*Sin[e + f*x])^n/(a - b*Sin[e +
f*x])^m), x], x] /; FreeQ[{a, b, d, e, f, g, n, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[m, 0]

Rule 3957

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_.)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.), x_Symbol] :> Int[(g*Co
s[e + f*x])^p*((b + a*Sin[e + f*x])^m/Sin[e + f*x]^m), x] /; FreeQ[{a, b, e, f, g, p}, x] && IntegerQ[m]

Rule 3963

Int[(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_.)*((g_.)*sec[(e_.) + (f_.)*(x_)])^(p_), x_Symbol] :> Dist[g^Int
Part[p]*(g*Sec[e + f*x])^FracPart[p]*Cos[e + f*x]^FracPart[p], Int[(a + b*Csc[e + f*x])^m/Cos[e + f*x]^p, x],
x] /; FreeQ[{a, b, e, f, g, m, p}, x] &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \frac {1}{(e \csc (c+d x))^{3/2} (a+a \sec (c+d x))^2} \, dx &=\frac {\int \frac {\sin ^{\frac {3}{2}}(c+d x)}{(a+a \sec (c+d x))^2} \, dx}{e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \frac {\cos ^2(c+d x) \sin ^{\frac {3}{2}}(c+d x)}{(-a-a \cos (c+d x))^2} \, dx}{e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \frac {\cos ^2(c+d x) (-a+a \cos (c+d x))^2}{\sin ^{\frac {5}{2}}(c+d x)} \, dx}{a^4 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \left (\frac {a^2 \cos ^2(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)}-\frac {2 a^2 \cos ^3(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)}+\frac {a^2 \cos ^4(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)}\right ) \, dx}{a^4 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {\int \frac {\cos ^2(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)} \, dx}{a^2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}+\frac {\int \frac {\cos ^4(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)} \, dx}{a^2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {2 \int \frac {\cos ^3(c+d x)}{\sin ^{\frac {5}{2}}(c+d x)} \, dx}{a^2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=-\frac {2 \cos (c+d x) \cot ^2(c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cot (c+d x) \csc (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{3 a^2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {2 \int \frac {\cos ^2(c+d x)}{\sqrt {\sin (c+d x)}} \, dx}{a^2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {2 \text {Subst}\left (\int \frac {1-x^2}{x^{5/2}} \, dx,x,\sin (c+d x)\right )}{a^2 d e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=-\frac {4 \cos (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cos (c+d x) \cot ^2(c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cot (c+d x) \csc (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {4 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{3 a^2 d e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {4 \int \frac {1}{\sqrt {\sin (c+d x)}} \, dx}{3 a^2 e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}-\frac {2 \text {Subst}\left (\int \left (\frac {1}{x^{5/2}}-\frac {1}{\sqrt {x}}\right ) \, dx,x,\sin (c+d x)\right )}{a^2 d e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ &=\frac {4}{a^2 d e \sqrt {e \csc (c+d x)}}-\frac {4 \cos (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cos (c+d x) \cot ^2(c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {2 \cot (c+d x) \csc (c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}+\frac {4 \csc ^2(c+d x)}{3 a^2 d e \sqrt {e \csc (c+d x)}}-\frac {4 F\left (\left .\frac {1}{2} \left (c-\frac {\pi }{2}+d x\right )\right |2\right )}{a^2 d e \sqrt {e \csc (c+d x)} \sqrt {\sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.38, size = 101, normalized size = 0.47 \begin {gather*} \frac {\sec ^2\left (\frac {1}{2} (c+d x)\right ) \left (12 (1+\cos (c+d x)) F\left (\left .\frac {1}{4} (-2 c+\pi -2 d x)\right |2\right )+(15+10 \cos (c+d x)-\cos (2 (c+d x))) \sqrt {\sin (c+d x)}\right )}{6 a^2 d (e \csc (c+d x))^{3/2} \sin ^{\frac {3}{2}}(c+d x)} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((e*Csc[c + d*x])^(3/2)*(a + a*Sec[c + d*x])^2),x]

[Out]

(Sec[(c + d*x)/2]^2*(12*(1 + Cos[c + d*x])*EllipticF[(-2*c + Pi - 2*d*x)/4, 2] + (15 + 10*Cos[c + d*x] - Cos[2
*(c + d*x)])*Sqrt[Sin[c + d*x]]))/(6*a^2*d*(e*Csc[c + d*x])^(3/2)*Sin[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [C] Result contains complex when optimal does not.
time = 0.18, size = 327, normalized size = 1.54

method result size
default \(-\frac {\left (6 i \cos \left (d x +c \right ) \sqrt {\frac {-i \cos \left (d x +c \right )+\sin \left (d x +c \right )+i}{\sin \left (d x +c \right )}}\, \sqrt {\frac {i \cos \left (d x +c \right )+\sin \left (d x +c \right )-i}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}\, \sin \left (d x +c \right ) \EllipticF \left (\sqrt {\frac {i \cos \left (d x +c \right )+\sin \left (d x +c \right )-i}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right )+6 i \EllipticF \left (\sqrt {\frac {i \cos \left (d x +c \right )+\sin \left (d x +c \right )-i}{\sin \left (d x +c \right )}}, \frac {\sqrt {2}}{2}\right ) \sin \left (d x +c \right ) \sqrt {\frac {-i \cos \left (d x +c \right )+\sin \left (d x +c \right )+i}{\sin \left (d x +c \right )}}\, \sqrt {\frac {i \cos \left (d x +c \right )+\sin \left (d x +c \right )-i}{\sin \left (d x +c \right )}}\, \sqrt {-\frac {i \left (-1+\cos \left (d x +c \right )\right )}{\sin \left (d x +c \right )}}-\left (\cos ^{3}\left (d x +c \right )\right ) \sqrt {2}+6 \left (\cos ^{2}\left (d x +c \right )\right ) \sqrt {2}+3 \sqrt {2}\, \cos \left (d x +c \right )-8 \sqrt {2}\right ) \sqrt {2}}{3 a^{2} d \left (\frac {e}{\sin \left (d x +c \right )}\right )^{\frac {3}{2}} \sin \left (d x +c \right )^{3}}\) \(327\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c))^2,x,method=_RETURNVERBOSE)

[Out]

-1/3/a^2/d*(6*I*sin(d*x+c)*cos(d*x+c)*((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2)*((-I*cos(d*x+c)+sin(d*x+c
)+I)/sin(d*x+c))^(1/2)*EllipticF(((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(d*x+c
))/sin(d*x+c))^(1/2)+6*I*sin(d*x+c)*((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2)*((-I*cos(d*x+c)+sin(d*x+c)+
I)/sin(d*x+c))^(1/2)*EllipticF(((I*cos(d*x+c)+sin(d*x+c)-I)/sin(d*x+c))^(1/2),1/2*2^(1/2))*(-I*(-1+cos(d*x+c))
/sin(d*x+c))^(1/2)-cos(d*x+c)^3*2^(1/2)+6*cos(d*x+c)^2*2^(1/2)+3*2^(1/2)*cos(d*x+c)-8*2^(1/2))/(e/sin(d*x+c))^
(3/2)/sin(d*x+c)^3*2^(1/2)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="maxima")

[Out]

e^(-3/2)*integrate(1/((a*sec(d*x + c) + a)^2*csc(d*x + c)^(3/2)), x)

________________________________________________________________________________________

Fricas [C] Result contains higher order function than in optimal. Order 9 vs. order 4.
time = 0.79, size = 119, normalized size = 0.56 \begin {gather*} -\frac {2 \, {\left (3 \, \sqrt {2 i} {\left (-i \, \cos \left (d x + c\right ) - i\right )} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) + 3 \, \sqrt {-2 i} {\left (i \, \cos \left (d x + c\right ) + i\right )} {\rm weierstrassPInverse}\left (4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + {\left (\cos \left (d x + c\right )^{2} - 5 \, \cos \left (d x + c\right ) - 8\right )} \sqrt {\sin \left (d x + c\right )}\right )}}{3 \, {\left (a^{2} d \cos \left (d x + c\right ) e^{\frac {3}{2}} + a^{2} d e^{\frac {3}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="fricas")

[Out]

-2/3*(3*sqrt(2*I)*(-I*cos(d*x + c) - I)*weierstrassPInverse(4, 0, cos(d*x + c) + I*sin(d*x + c)) + 3*sqrt(-2*I
)*(I*cos(d*x + c) + I)*weierstrassPInverse(4, 0, cos(d*x + c) - I*sin(d*x + c)) + (cos(d*x + c)^2 - 5*cos(d*x
+ c) - 8)*sqrt(sin(d*x + c)))/(a^2*d*cos(d*x + c)*e^(3/2) + a^2*d*e^(3/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {\int \frac {1}{\left (e \csc {\left (c + d x \right )}\right )^{\frac {3}{2}} \sec ^{2}{\left (c + d x \right )} + 2 \left (e \csc {\left (c + d x \right )}\right )^{\frac {3}{2}} \sec {\left (c + d x \right )} + \left (e \csc {\left (c + d x \right )}\right )^{\frac {3}{2}}}\, dx}{a^{2}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))**(3/2)/(a+a*sec(d*x+c))**2,x)

[Out]

Integral(1/((e*csc(c + d*x))**(3/2)*sec(c + d*x)**2 + 2*(e*csc(c + d*x))**(3/2)*sec(c + d*x) + (e*csc(c + d*x)
)**(3/2)), x)/a**2

________________________________________________________________________________________

Giac [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(e*csc(d*x+c))^(3/2)/(a+a*sec(d*x+c))^2,x, algorithm="giac")

[Out]

integrate(1/((e*csc(d*x + c))^(3/2)*(a*sec(d*x + c) + a)^2), x)

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\cos \left (c+d\,x\right )}^2}{a^2\,{\left (\frac {e}{\sin \left (c+d\,x\right )}\right )}^{3/2}\,{\left (\cos \left (c+d\,x\right )+1\right )}^2} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + a/cos(c + d*x))^2*(e/sin(c + d*x))^(3/2)),x)

[Out]

int(cos(c + d*x)^2/(a^2*(e/sin(c + d*x))^(3/2)*(cos(c + d*x) + 1)^2), x)

________________________________________________________________________________________